32=(x^2+2)

Simple and best practice solution for 32=(x^2+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 32=(x^2+2) equation:



32=(x^2+2)
We move all terms to the left:
32-((x^2+2))=0
We calculate terms in parentheses: -((x^2+2)), so:
(x^2+2)
We get rid of parentheses
x^2+2
Back to the equation:
-(x^2+2)
We get rid of parentheses
-x^2-2+32=0
We add all the numbers together, and all the variables
-1x^2+30=0
a = -1; b = 0; c = +30;
Δ = b2-4ac
Δ = 02-4·(-1)·30
Δ = 120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{120}=\sqrt{4*30}=\sqrt{4}*\sqrt{30}=2\sqrt{30}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{30}}{2*-1}=\frac{0-2\sqrt{30}}{-2} =-\frac{2\sqrt{30}}{-2} =-\frac{\sqrt{30}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{30}}{2*-1}=\frac{0+2\sqrt{30}}{-2} =\frac{2\sqrt{30}}{-2} =\frac{\sqrt{30}}{-1} $

See similar equations:

| 2.5x+33.3=0.7-13.8x | | 8x-+9=11 | | 6x-1+8=12 | | 4.1+49=16.81+7x | | v-9.86=7.8 | | A=x2+4 | | 7x-1+4=18 | | 16/y*2-3y=13 | | x-8.1=6.6 | | y=2/5+1 | | A=(x^2+5) | | 6x-1+9=11 | | 3(k+1)+11k=2(4(4+5k)+3 | | 85-v=162 | | 9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999=9x | | 4v+9=2v+1 | | 2(-3x)=000) | | 3x2-13x+12=0 | | 9x-1+7=10 | | Y=x-26/x | | 5a-5=a-19 | | 4p-6=3p+13 | | 2(x-3)+1=11(x+2) | | -4(3x-6)=80 | | 92+2x=3x | | 2(x-3)=11(x+2) | | (1/4)m=5 | | 5g-5g=-15 | | x+10=-3x+30 | | -6/5w=-18 | | -0.8p+3.95=p+0.8 | | -4/5p+70/20=p+4/5 |

Equations solver categories